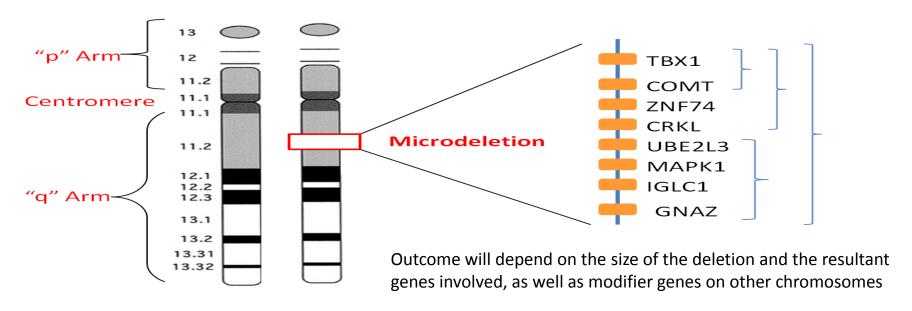
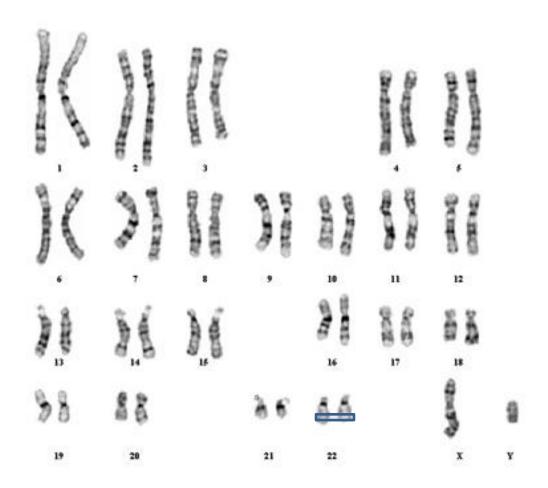
Why Identifying 22q11.2 MicroDeletion Syndrome is Important?


LUYEN QUOC HAI, PhD
Bionet Genetic & Cancer Counseling Center

Contents

- What is a Microdeletion?
- Overview of the 22q11.2DS (DS Microdeletion Syndrome)
- Why 22q11.2DS is important to the OB Community?
 - ✓ 22q11.2DS is common
 - ✓ 22q11.2DS is not related to advanced maternal age
 - ✓ 22q11.2DS has significant morbidity
 - ✓ Wide variability hampers early diagnosis
- Early Intervention Matters


What is a Microdeletion?

- 1MB (megabase) = 1 million base pairs
- Microdeletions are 100kb to several MB
- Karyotype can usually only visually detect ≥7-10 MB

Overview of the 22q11.2DS

Karyotyping

22q11.2 Deletion Syndrome^{1,2}

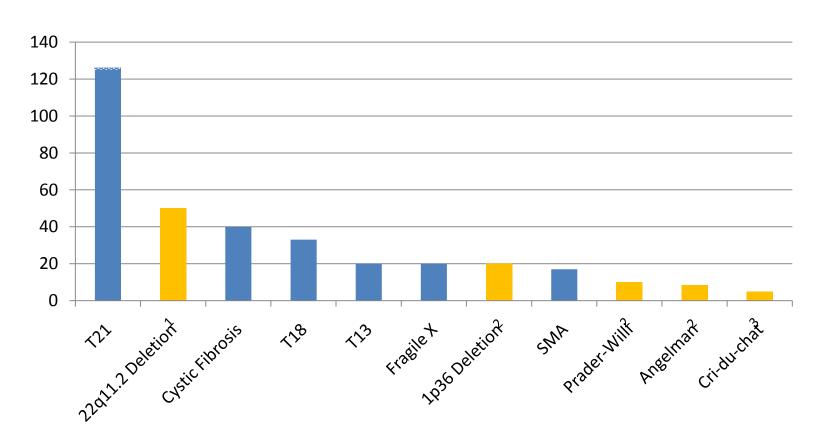
- Population incidence ~1 in 2000, though NEJM suggests higher
- Several other names: DiGeorge, Velo-Cardio-Facial Syndrome (VCFS)
- Often unrecognized at birth
- Common features
 - Congenital heart defect (75%)
 - Immune deficiencies (75%)
 - Palatal abnormalities (70%)
 - Schizophrenia in young adulthood (25%)
 - Hypocalcemia (77%)
 - Developmental delay and learning disabilities (70-90%)

¹International 22q11.2 Foundation – Handbook

²www.genereviews.org

Medical Genetics Matters

		•				
Deletion Disorder	Frequency	Most common deletion	% cases with common large del	Additional comments		
22q11.2	1/2,000	3Mb	87	Various smaller dels		


22q deletion/DiGeorge

- Involving haploinsufficiency of aprocimately 30 40 genes
- Resulting in a multisystem disorder
- May have ultrasound findings (heart defects)
- 93% have no family history

Why 22q11.2DS is Important to the OB Community?

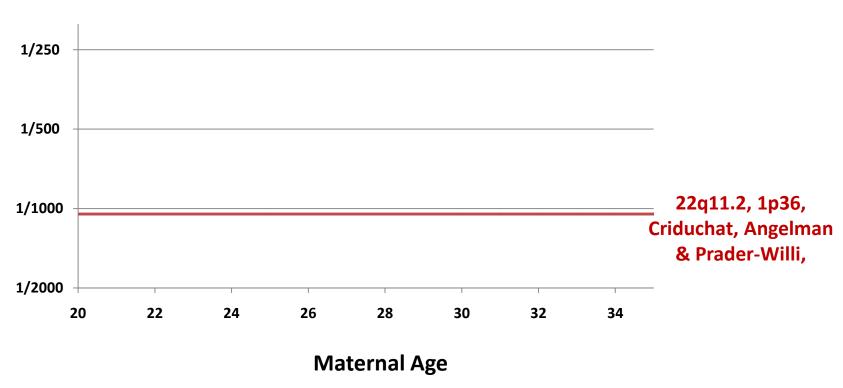
High Incidence Conditions

Incidence out of 100,000 Live Births

¹Nussbaum et al. 2007. Thompson and Thompson Genetics in Medicine (7th edn). Oxford Saunders: Philadelphia

– Not for Further Reproduction or Use

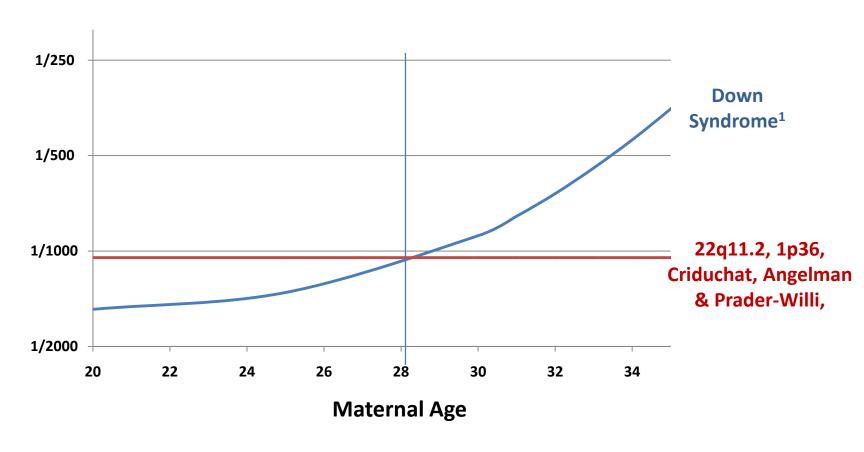
²http://www.genetests.org.


³http://ncbi.nlm.nih.gov

22q11.2 is the most common microdeletion syndrome

- With an estimated prevalence of $\approx 1/2000 1/4000$ live births.
- Actual occurrence may be higher in light of the variable expressivity.

More Common Than Down Syndrome in Younger Women


Incidence of Disorders

¹Combined prevalence using higher end of published ranges from Gross et al. Prenatal Diagnosis 2011; 39, 259-266; and www.genetests.org. Total prevalence may range from 1/1071 - 1/2206.

Not for Further Reproduction or Use

More Common Than Down Syndrome in Younger Women

¹Snijders, et al. Ultrasound Obstet Gynecol 1999;13:167–170. ²Combined prevalence using higher end of <u>published ranges from Gross</u> et al. Prenatal Diagnosis 2011; 39, 259-266; and <u>www.genetests.org</u>. Total prevalence may range from 1/1071 - 1/2206.

– Not for Further Reproduction or Use

The 2nd most common cause of congenital heart disease after Down sydrome

Identified in

- 52% of patients with IAA type B
- 35% with truncus arteriosus
- 16% with tetralogy of fallot

* Goldmuntz 1993; Bassett 2011

The 2nd most common case of major developmental disabilities after Down syndrome

• Accounting for $\approx 2.4\%$ of infividual with such delay

* Rauch 2006; Goldmuntz 1993; Bassett 2011

The most common cause of syndromic palatal anomalies

- Including:
- Overt cleft palate
- Cleft lip/palate
- SMCP/bifid uvula/velopharygeal dysfunction

* McDonald MCGim 1997, 1999; Solot 2000; Bassett 2011

Early Screening & Diagnosis of 22q11.2DS

Screening for 22q11.2 DS

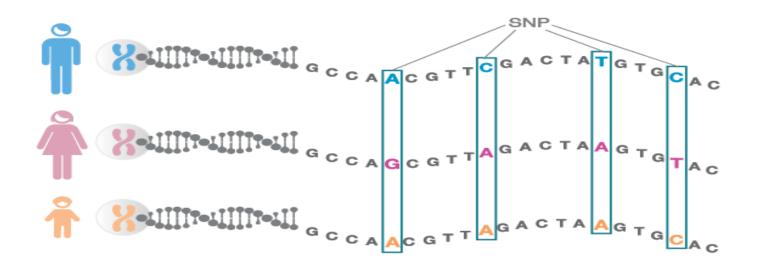
Different Context – No Longer High Risk Only

- Previously high risk referrals only
 - focus on cardiac anomalies (75% in 22q11.2 deletion syndroe)
- What are other anomalies to consider on ultrasound in low risk setting?
 - Renal Abnormalities Both Unilateral and Bilateral
 - Neurological Defects
 - Limb and Skeletal Defects
 - Craniofacial
 - Gastrointestinal Anomalies
 - Nuchal translucency
 - Polyhydramnios

Peer Review - NIPT for Microdeletions (AJOG; 12/2014)

RESEARCH

ajog.org


OBSTETRICS

Expanding the scope of noninvasive prenatal testing: detection of fetal microdeletion syndromes

Ronald J. Wapner, MD; Joshua E. Babiarz, PhD; Brynn Levy, MSc (Med), PhD; Melissa Stosic, MS; Bernhard Zimmermann, PhD; Styrmir Sigurjonsson, PhD; Nicholas Wayham, BS; Allison Ryan, PhD; Milena Banjevic, PhD; Phil Lacroute, PhD; Jing Hu, PhD; Megan P. Hall, PhD; Zachary Demko, PhD; Asim Siddiqui, PhD; Matthew Rabinowitz, PhD; Susan J. Gross, MD; Matthew Hill, PhD; Peter Benn, DSc

NIPT: Screening for 22q11.2 DS

NIPT method using SNPs

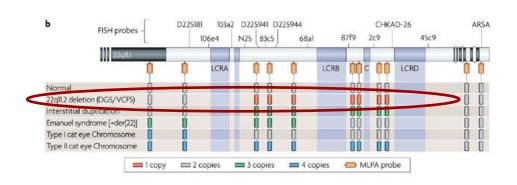
- A DNA sequence variation occurring when a single base pair (nucleotide) A, T, C, or G is changed.
- These are **normal** genetic changes that occur in every person

Screening for 22q11.2 DS - NIPT

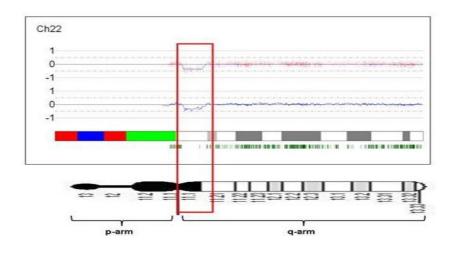
Syndrome	Incidence	Sensitivity ¹	Specificity ¹	Location (Size of Region) # SNPs	Lifespan	Mental Effects	Heart Defects	Other features
22q11.2 Deletion/ DiGeorge	1 in 2,000 ²	95.7% (45/47) (85.5-99.5%) ⁵	>99% (419/422) (97.9-99.9%) ⁵	22q11.2 (2.9 MB) 672 SNPs	Reduced	Mild to moderate intellectual disorder & schizophrenia	Yes	Palate and feeding Immune problems, low calcium, seizures
Prader-Willi	1 in 10,000 ³	93.8% (15/16) (69.8-99.8) ⁵	>99% (453/453) (99.2-100%) ⁵	15q11-q13 Paternal (5.9 MB) 1,152 SNPs	Reduced	Mild to severe intellectual disorder & behavioral problems	No	Hypotonia in babies, insatiable appetite
Angelman	1 in 12,000 ³	95.5% (21/22) (77.2-99.9%) ⁵	>99% (447/447) (99.2-100%) ⁵	15q11-q13 Maternal (5.9 MB) 1,152 SNPs	Normal	Severe intellectual disorder	No	"Happy" affect, ataxia, microcephaly, no speech, seizures
Cri-du-chat	1 in 20,000 ⁴	>99% (24/24) (85.8-100%) ⁵	>99% (444/445) (98.8-99.9%) ⁵	5p15.2 (20 MB) 1,152 SNPs	Infancy to adult	Moderate to severe intellectual disorder & behavioral problems	No	Cat like cry, growth problems, wide set eyes
1p36 Deletion	1 in 5,000 ³	>99% (1/1) (2.5-100%) ⁵	>99% (468/468) (99.2-100%) ⁵	1p36 (10 MB) 1,152 SNPs	Normal in most	Severe intellectual disorder & behavioral problems	Yes	Limited/no language, hearing loss, abnormal ears, seizures

¹Performance specifications reflect presence or absence of the complete targeted region

Total incidence: approximately 1 in 1,000


http://www.ncbi.nlm.nih.gov/books/NBK1144/ 6http://omim.org/entry/123450:

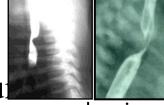
² Wapner et al. Expanding the scope of noninvasive prenatal testing: detection of fetal microdeletion syndromes. Am J Obstet Gynecol 2015; 212:xxxx; ³Nussbaum et al 2007. Thompson and Thompson Genetics in Medicine (7th edn). Oxford Saunders: Philadelphia; 4 http://www.ncbi.nlm.nih.gov/books/NBK1330/;


Not for Further Reproduction or Use

Confirm Deletion - Current Detection Methods Still Include FISH

MLPA and microarrays are preferred

MLPA


Microarray

Early Diagnosis of 22q11.2DS can Dramatically Decrease Morbidity and Likely Mortality

- As 3/4 of children with 22q11.2DS have congenital heart disease
 - Many associated lesions require neonatal surgery
 - Ductal dependent lesions may not be identified using postnatal pulse oximetry monitoring
 - Late diagnosis increases morbidity and mortality
 - Early diagnosis of congenital heart disease markedly reduces overall healthcare costs

Early Intervention Matters

- •Prepare to deliver at a tertiary care facility
- No live viral vaccines until immune system has matural

vascular ring

- •Calcium monitoring to avoid seizures and cognitive impairment
- •Palatal exam to pre-anticipate difficulties with feeding and speech

FOR THE FIRST TIME, PRENATAL SCREENING CAN AFFECT LONG TERM OUTCOME FOR THE BABY

In Summary

• 22q11.2DS is common

- 2nd most common cause of CHD
- More common cause of TOF than Down syndrome
- Most common cause of syndromic palatal anomalies
- 2nd most common cause of developmental differences

• 22q11.2DS has significant morbidity

- Multi-organ system involvement
- Immune, Endocrine and Gastrointestinal problems
- Variable cognitive deficits and psychiatric illness

• 22q11.2DS is not related to advanced maternal age

- Affected offspring equally likely born to young mothers as with AMA
- Wide variability hampers early diagnosis
 - Delaying interventions and leading to poorer prognoses

Summary (cont.)

- Prenatal Dx offers both medical and emotional preparedness
- Concurrently reducing costs related to late/missed diagnoses

Thank you for your attention!

LUYEN QUOC HAI, PhD

Bionet Genetic and Cancer counseling Center