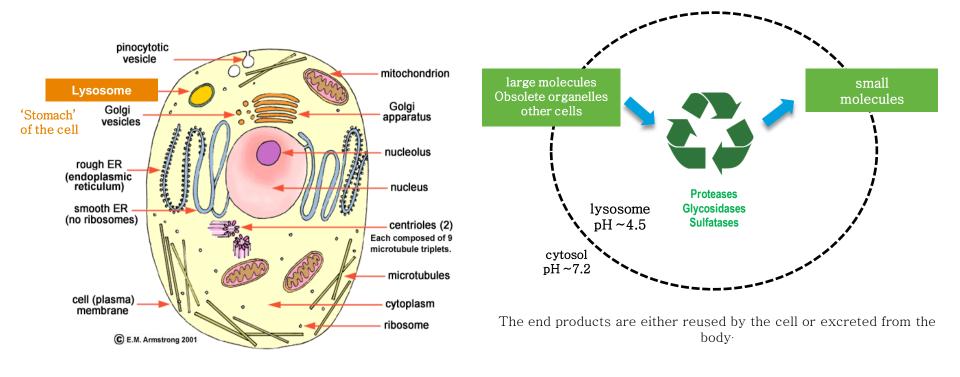
Why? NBS for LSD Lysosomal Storage Disorders

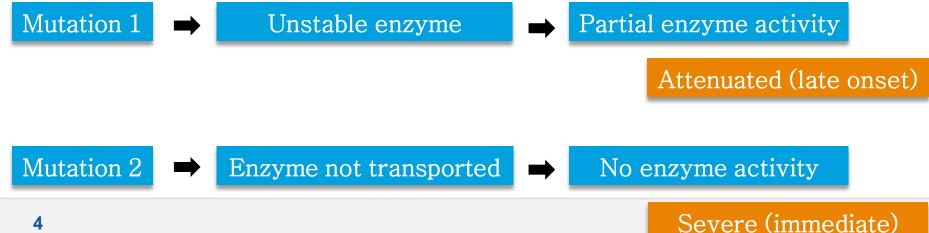
Grace Chua May, 2018

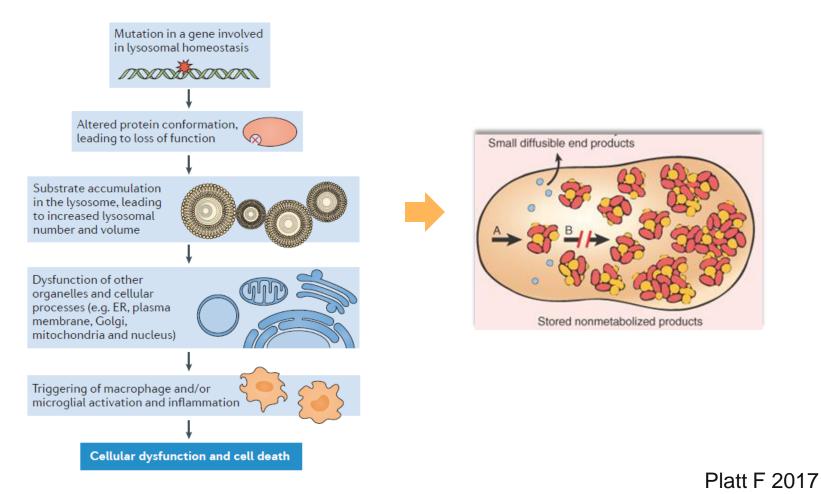
Covers


- 1. Lysosomes are the recycler of the cell
- 2. What are LSD Lysosomal Storage Disorders?
 - Highlighting Pompe, Fabry, Gaucher
 - Why? NBS for LSD
- 3. Treatments available
 - Potential LSD Candidates for Newborn Screening
- 4. Strategies For LSD Screening
- 5. Experiences and results from labs screening LSD
 - Global LSD Screening Status
- 6. Summary

What are lysosomes?

Lysosomes are Cellular Organelles


Lysosomes are the 'Recyclers' of the Cell


LYSOSOMAL STORAGE DISORDERS (LSD) ARE...

- Group of ~50 rare disorders, with a combined prevalence of 1 : 5,000 live births
- **Recessively inherited genetic disorders**
- Carriers may have low total enzyme activity, unaffected
- Most autosomal, some X-linked (i.e., Fabry)
- Mutations affect the severity of the LSD
- Can come slowly in adulthood or arrive suddenly and fatally in infancy
- Phenotype cannot be predicted from genotype
- 10 LSDs have drug therapies (others treated by bone marrow transplant), but LSDs with neurological dysfunction are poorly served
- Symptoms can include seizures and dementia, enlargement of the spleen and liver, and abnormal bone formation

What are Lysosomal Storage Disorders?

LSD affects Normal Functioning of Cells

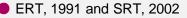
Highlighting LSD Candidates For Newborn Screening

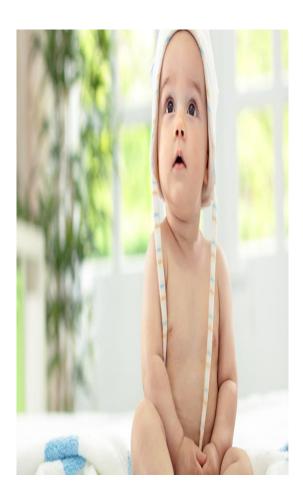
- Glycogen storage disease type II, also called Pompe disease, is an autosomal recessive metabolic disorder which damages muscle and nerve cells throughout the body.
- Symptoms: Floppy Baby (of muscle weakness, poor muscle tone), Difficulty breathing, Trouble feeding / failure to thrive, Respiratory infections

ERT, 2006

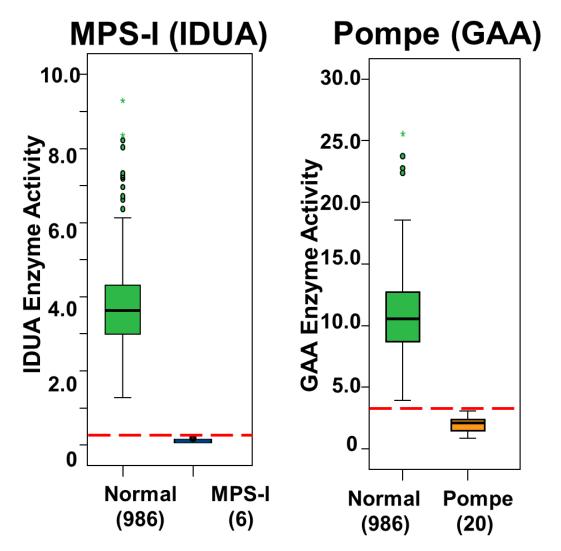
Pompe

1:40,000

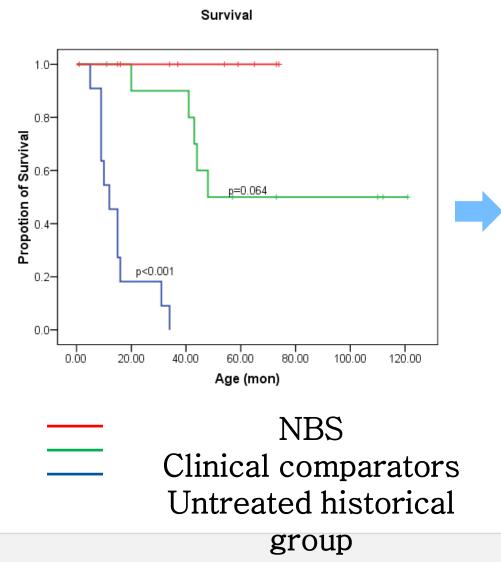

Fabry


1:40,000*

Gaucher


1:57,000

- It is inherited in an X-linked manner.
- Mutation in the GLA gene cause deficient a-Galactosidase A enzyme activity which lead to progressive globotriaosylceramide (GL-3) accumulation
- Symptoms: Enlarged heart, Heart murmur, Unknown cause of kidney failure, Fabry crises (pain in particularly in hands and feet), Stomach pain, nausea, and vomiting
- ERT, 2003
- One of the most common lysosomal storage disorders
 Time 4, 0, 0
- Type 1, 2, 3
- Not enough enzyme glucocerebrosidase (GCase), which breaks down a certain lipid, or fat, in the body's cells called glucocerebroside
- Symptoms: enlarged spleen and liver, which are often present at birth; liver malfunction; bone deformities, pain or crises; severe neurologic complications


MPS-I & Pompe – Normal vs- Affected

7 A good separation between normal and affected groups is prerequisite for screening purposes.

Early Detection is Critical - POMPE

Screening benefits:

- Identify affected as early as possible
- Provide

 reproductive
 choices for
 preventive actions
 for additional
 babies

Chien YH, et al. J Pediatr. 2015; 166:985-991

LSD Therapy – Better outcome when treated early in life

ERT	 Enzyme Replacement Therapy - Intraveneous delivery of deficient enzymes 	0000
SRT	 Substrate Reduction Therapy oral intake of molecules to reduce excess substrates 	
HSCT	 Hematopoietic stem cell transplatation 	
GT	• Gene Therapy	

Potential LSD Candidates For Newborn Screening

Disorder	Prevalence	Approved Therapy	Therapy in Clinical Trial
Pompe	1 : 40,000	ERT, 2006	GT, phase I/II
MPS-I	1 : 100,000	ERT, 2003	
Fabry	1 : 40,000*	ERT, 2003	HSCT, phase I/SRT, phase II
Gaucher	1 : 57,000	ERT, 1991/SRT, 2002	GT, phase I
Krabbe	1 : 100,000		HSCT ?
Niemann-Pick A/B	1 : 250,000		ERT, phase III
MPS-II	1 : 136,000	ERT, 2006	GT, phase I/II
MPS-IVA	1 : 250,000	ERT, 2014	
MPS-VI	1 : 300,000	ERT, 2005	
*male births			

Strategies For LSD Screening

Direct measurement of lysosomal enzymatic activity

• MSMS or fluometric methods

Direct measurement of lysosomal enzymatic abundance

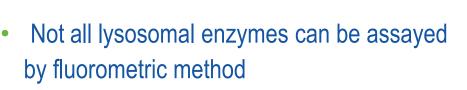
Misses cases where enzyme is folded but inactive (e.g. 10-20% of MPS-II cases)

LSD biomarker quantification

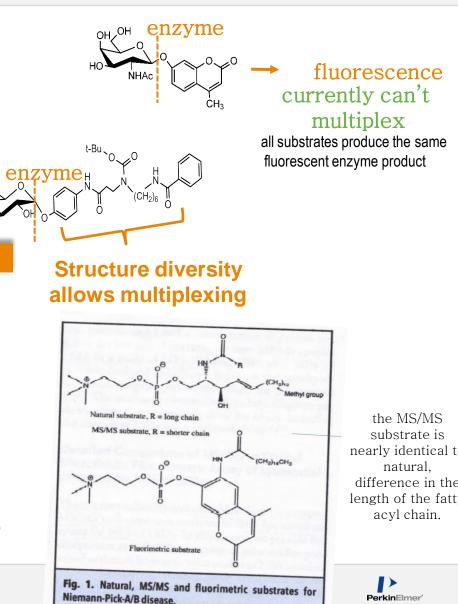
- Measurement of substrates that accumulate due to a deficient lysosomal enzyme
- Substrates may not accumulate within 1-3 days after birth
- Promising for 2nd tier tests

Sequencing of lysosomal proteins

- Pathogenic mutation not known
- Too slow and expensive
- Poor knowledge of genotype-phenotype relationship


Direct measurement of lysosomal enzymatic activity using tandem mass spectrometry and fluorometric methods

Fabry


 Disadvantage of fluorescent is lack of multiplexing

This will be problematic because the number of LSDs entering in NBS arena is increasing

 Advantage of MS/MS is multiplexing and high dynamic range Multiple enzymes can be analyzed in a single DBS punch

Ex. All fluorometric substrates for Niemann-Pick-A/B lead to False-negative due to a mutation that causes high reading of enzymatic activity for fluorogenic substrates compared to the natural sphingomyelin substrate

A supporting publication

Clin Chem. 2017 Jul;63(7):1271-1277. doi: 10.1373/clinchem.2016.269027. Epub 2017 Apr 27.

Mass Spectrometry but Not Fluorimetry Distinguishes Affected and Pseudodeficiency Patients in Newborn Screening for Pompe Disease.

Liao HC^{1,2}, Chan MJ³, Yang CE^{4,5}, Chiang CC³, Niu DM^{2,4}, Huang CK⁴, Gelb MH⁶.

Author information

Abstract

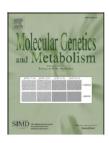
BACKGROUND: Deficiency of the lysosomal enzyme acid α-glucosidase (GAA) causes Pompe disease. Newborn screening for Pompe disease is ongoing, and improved methods for distinguishing affected patients from those with pseudodeficiency, especially in the Asian population, would substantially reduce the number of patient referrals for clinical follow-up.

METHODS: We measured the enzymatic activity of GAA in dried blood spots on newborn screening cards (DBS) using a tandem mass spectrometry (MS/MS) assay. The assay displayed a relatively large analytical range compared to the fluorimetric assay with 4-methylumbelliferyl- α -glucoside. DBS from newborns confirmed to have infantile-onset Pompe disease (IOPD, n = 11) or late-onset Pompe disease (LOPD) (n = 12) and those from patients bearing pseudodeficiency alleles with or without Pompe mutations, or Pompe disease carriers (n = 230) were studied.


RESULTS: With use of the MS/MS GAA assay in DBS, 96% of the pseudodeficiency newborns and all of the Pompe disease carriers were well separated from the IOPD and LOPD newborns. The fluorimetric assay separated <10% of the pseudodeficiencies from the IOPD/LOPD group.

CONCLUSIONS: The relatively large analytical range MS/MS GAA assay but not the fluorimetric assay in DBS provides a robust approach to reduce the number of referrals and should dramatically facilitate newborn screening of Pompe disease.

© 2017 American Association for Clinical Chemistry.


Other Publications

Contents lists available at ScienceDirect

Molecular Genetics and Metabolism

journal homepage: www.elsevier.com/locate/ymgme

Pilot study of newborn screening for six lysosomal storage diseases using Tandem Mass Spectrometry☆

Susan Elliott ^a, Norman Buroker ^a, Jason J. Cournoyer ^b, Anna M. Potier ^b, Joseph D. Trometer ^b, Carole Elbin ^b, Mack J. Schermer ^b, Jaana Kantola ^e, Aaron Boyce ^a, Frantisek Turecek ^c, Michael H. Gelb ^{c,d,**}, C. Ronald Scott ^{a,*}

^a Department of Pediatrics, University of Washington, Seattle, WA 98195, United States

^b PerkinElmer, Waltham, MA 02451, United States

^c Chemistry, University of Washington, Seattle, WA 98195, United States

^d Biochemistry, University of Washington, Seattle, WA 98195, United States

^e PerkinElmer, Turku 20750, Finland

Newborn screening for lysosomal storage disorders by tandem mass spectrometry in North East Italy

Alberto B. Burlina¹ • Giulia Polo¹ • Leonardo Salviati^{2,3} • Giovanni Duro⁴ • Carmela Zizzo⁴ • Andrea Dardis⁵ • Bruno Bembi⁵ • Chiara Cazzorla¹ • Laura Rubert¹ • Roberta Zordan^{2,3} • Robert J. Desnick⁶ • Alessandro P. Burlina⁷

Experiences and results from labs screening LSD

Global LSD Newborn Screening Status

Terriotory	Region
	Georgia, US
	Illinois, US
	Kentucky, US
	Michigan, US
	Missouri, US
	North Carolina, US
	New Jersey, US
	New York, US
	Ohio, US
	Pennsylvania, US
	Tennessee, US
	Washington, US
	Wisconsin, US
NA	Mexico
	Taiwan
	Japan
	Korea
APAC	China
	Austria
	Belgium
	Hungary
	Italy
	Spain
	France
EMEA	Russia

22 OUT OF 25PROGRAMS **USING MASS** SPEC BASED ENZYME ACTIVITY ASSAYS!

Summary

- NBS for LSDs is successful by direct measurement of enzyme activities in DBS.
- Newborn screening for LSDs is taking off in the US and some countries in Europe and Asia. From Asia, Taiwan is leading and screening 4 LSDs when Myozyme is available in 2005 (for Pompe treatment under country's health reimbursement).
- MSMS enzyme assays have a much higher analytical range than fluorimetric assays, leading to a lower number of screen positives, as shown by largescale pilot studies using equivalent cutoffs.
- PerkinElmer NeoLSD[™] is CE-IVD product, available and used by Newborn Screening facilities.

Visit our booth. See you and Thank you.

Grace Chua

Reproductive Health

Product Manager

grace.chua@perkinelmer.com

